COLTON

February 19, 2002

Ms. Lauren Foundahl U.S. EPA Region 9 ATTN: W-5-3, NPDES/DMR 75 Hawthorne Street San Francisco, CA 94105

RE: BIO-SOLIDS ANNUAL REPORT (40 CFR PART 503)
JANUARY - DECEMBER 2001

Dear Ms. Foundahl:

Enclosed is the City of Colton's Water Reclamation Facility 2001 Annual Bio-Solids Disposal Report.

The contents of the report include: The total wet tonnage of bio-solids hauled from the facility, the lab results, the pollutant analysis, the Class "B" pathogen certification, and the hauler's name and address.

All constituents are below pollutant limits.

Sincerely,

William F. Roth

Wastewater Utility Manager

1 Tellin o not

WFR/dew

160 South 10th Street

Colton, California 92324

[909] 370-5099

BIO-SOLIDS CERTIFICATION

"I certify under penalty of law, that the Class B pathogen requirements in 503.32(b) and the vector attraction reduction requirements in 503.33(b)(1) have been met. The determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements [and the vector attraction requirements if applicable] have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Wellein From 2/19/02

◆ Describe how the Class B pathogen requirements are met.

The pathogen requirements were met by air drying the bio-solids for a period of over three months with the ambient temperature over 0 degree's Celsius at least two months of the three-month period.

♦ If applicable, describe how the vector attraction reduction requirements 1 to 8 are met.

The vector attraction reduction requirements were met by anaerobic digestion with a volatile reduction of 38% or more.

COLTON SOLIDS DISPOSAL REPORT

JANUARY - DECEMBER 2001

MONTH	BIOSOLIDS	GRIT	SCREENINGS
	WET TONS	CU/YDS	CU/YDS
JAN.	0	0	23.25
FEB.	0	0	23.25
MAR.	0	*0	23.25
APR.	0	0	23.25
MAY	0	0	23.25
JUN.	212.33	0	23.25
JUL.	573.58	0	23.25
AUG.	3712.92	0	23.25
SEP.	0	0	23.25
OCT.	839.47	0	23.25
NOV.	165.29	0	23.25
DEC.	0	0	23.25
TOTAL	5503.59	0	279.00

^{*}Cleaned our east grit chamber but have not hauled it off site yet. It will be reported on this solids disposal report when we haul it to the land fill.

DESTINATION OF SOLIDS

And the second s			
HAULER	TYPE	USE	DESTINATION

SYNAGRO	BIOSOLIDS	1	SYNAGRO P.O. BOX 7027
			CORONA, CA. 92878-7027
COLTON	SCREENINGS	LAND FILL	COUNTY LAND FILL
DISPOSAL	&		850 TROPICA RANCHO RD.
	GRIT		COLTON, CA. 92324

February 11, 2002

Mr. William F. Roth City of Colton 1270 So. Rancho Avenue Colton, CA 92324

Subject:

2001 Biosolids Land Application Data Summary

Dear Mr. Roth:

Enclosed is a summary of biosolids land application information for 2001 as compiled by Synagro.

Synagro appreciates your business and we look forward to serving your technical needs in the coming year. If you have any questions, please call me at (909) 277–2662 extension 23.

Sincerely,

Mark Grey, Ph. D.

Mark Duy/100

Regional Technical Services Director

Enclosures

A Residuals Management Company

Biosolids Land Application Annual Report

for

Colton

2001

California Land Application

COLTON, CA ANAEROBICALLY DIGESTED/AIR DRIED

MONTH/YEAR	<u>AMOUNT</u>	<u>UNIT</u>	DRY TONS	<u>UNIT</u>	DRY METRIC TONS
June 2001	212.32	W	120.39	D	109.19
July 2001	573.58	W	325.22	D	294.98
August 2001	3,712.92	W	1,615.49	D	1,465.25
YEARLY TOTAL:	4,498.82	W	2,061.10	D	1,869.42

COLTON, CA CAKE

MONTH/YEAR	<u>AMOUNT</u>	<u>UNIT</u>	DRY TONS	<u>UNIT</u>	DRY METRIC TONS
October 2001 November 2001	839.46 165.29	W W	365.25 71.92	D D	331.28 65.23
YEARLY TOTAL:	1,004.75	W	437.17	D	396.51

ANNUAL RESIDUAL SAMPLING SUMMARY FORM

Facility Name:

COLTON, CA

NPDES#:

WWTP Name:

COLTON

Residual Analysis Data Product Type Lab Usage From Through Percent Solids	ANDAD 06/01/01 07/31/01 56.7	ANDAD 08/01/01 08/31/01 43.51		CAK 10/01/01 11/30/01 43.51
PARAMETERS (mg/kg dry weight)				
Arsenic	5	6.01	3.72	6.01
Cadmium	1	3.5	1.8	3.5
Chromium	29.5	68	64	68
Copper	237.5	372	358	372
Lead	97.75	123	135	123
Mercury	2.175	1.94	1.69	1.94
Molybdenum	7	13	<5	13
Nickel	21.5	50	39	50
Selenium	5	3.86	3.37	3.86
Zinc	492.5	832	824	832
TKN	21,825	17,700	15,200	17,700
Ammonia-Nitrogen	0	2,600	2,100	2,600
Nitrate-Nitrogen	71	814	662	814
Total Phosphorus	0	18,400	0	18,400

State: California

<u>Field</u>	<u>Latitude/Longitude</u>	<u>Landowner</u>	<u>Acres</u>	<u>Hectares</u>	Dry <u>Tons</u>	DMT Applied	DT/AC Applied	DMT/HA Applied	Plant Av Nitrogen (Ibs/ac)	allable Applied (kg/ha)	Crop	Planting <u>Date</u>	Harvest <u>Date</u>
County: RIVERSID CA-RI-00005-0-0011A CA-RI-00005-0-0011B CA-RI-00040-0-0001 CA-RI-00043-0-0003 CA-RI-00056-0-0001	33.51' " /117.05'50" 33.51' " /117.05'50" 33.38'05" /117.04'48" 33.47'13" /117.10'35" 33.52'15" /117.06'24"	JOHN V. MOTTE JOHN V. MOTTE DOMENIGONI BROS. A&G, INC. MYSTIC LAKE DUCK	30.3 19.3 110.0 70.0 80.0	12.3 7.8 44.6 28.4 32.4	691.51 526.11 437.17 120.39 723.08	627.20 477.19 396.51 109.19 655.84	22.82 27.26 3.97 1.72 9.04	51.12 61.06 8.90 3.85 20.25	219.35 279.90 40.81 15.26 92.81	245.68 313.49 45.70 17.09 103.94	ALFALFA ALFALFA WHEAT WHEAT WHEAT	10/15/01 10/15/01 12/01/01 12/15/01 11/15/01	10/15/02 10/15/02 06/30/02 06/15/02 07/15/03

The concentration of all the pollutants in your sludge must be below the limit concentration listed in Table 3 [reference 503.13 (b)(3)].

Table 3					
Pollutant Limits for					
	No Loading Rates	Restrictions			
Pollutant	Limits	NSSS Mean			
	(mg/kg)	(mg/kg)			
Arsenic	41	ND			
Cadmium	39	1			
Chromium	1200	29			
Copper	1500	310			
Lead	300	110			
Mercury	17	3.0			
Molybdnum	18	8			
Nickel	420	18			
Selenium	36	ND			
Zicn	icn 2800 650				
	Dry Weight Ba	asis			

Stock pile #6, Dry sludge to be hauled in July/August 2001

Sampled: (1/23/01)

ND- None detected at Reporting Limit

Nitrogen & Phosphorus:

Nitrate	230	mg/kg
Nitrite	53	mg/kg
Kjeldahl Nitrogen	21000	mg/kg
Total Phosphorus	26000	mg/kg

Total Solids 35.8 %

The concentration of all the pollutants in your sludge must be below the limit concentration listed in Table 3 [reference 503.13 (b)(3)].

Table 3 Pollutant Limits for No Loading Rates Restrictions					
Pollutant	Limits	NSSS Mean			
	(mg/kg)	(mg/kg)			
Arsenic	41	ND			
Cadmium	39	1			
Chromium	1200	38			
Copper	1500	190			
Lead	300	130			
Mercury	17	1.0			
Molybdnum	18	7			
Nickel	420	34			
Selenium	36	ND			
Zicn	2800	390			
Dry Weight Basis					

Stock pile #3, Dry sludge to be hauled in July/August 2001

Sampled: (1/23/01)

ND- None detected at Reporting Limit

Nitrogen & Phosphorus:

Nitrate 41 mg/kg Nitrite 19 mg/kg Kjeldahl Nitrogen 9300 mg/kg Total Phosphorus 11000 mg/kg

Total Solids 87.6 %

The concentration of all the pollutants in your sludge must be below the limit concentration listed in Table 3 [reference 503.13 (b)(3)].

Table 3 Pollutant Limits for No Loading Rates Restrictions					
Pollutant	Limits	NSSS Mean			
	(mg/kg)	(mg/kg)			
Arsenic	41	ND			
Cadmium	39	1			
Chromium	1200	25			
Copper	1500	240			
Lead	300	71			
Mercury	17	ND			
Molybdnum	18	8			
Nickel	420	15			
Selenium	36	ND			
Zicn	2800	460			
	Dry Weight Ba	asis			

Stock pile #11, Dry sludge to be hauled in July/August 2001

Sampled: (1/23/01)

ND- None detected at Reporting Limit

Nitrogen & Phosphorus:

Nitrate	ND	mg/kg
Nitrite	ND	mg/kg
Kjeldahl Nitrogen	18000	mg/kg
Total Phosphorus	6500	mg/kg

Total Solids 72.4 %

The concentration of all the pollutants in your sludge must be below the limit concentration listed in Table 3 [reference 503.13 (b)(3)].

Table 3						
Pollutant Limits for						
No Loading Rates Restrictions						
Pollutant	Limits	NSSS Mean				
	(mg/kg)	(mg/kg)				
Arsenic	41	ND				
Cadmium	39	1				
Chromium	1200	25				
Copper	1500	240				
Lead	300	71				
Mercury	17	ND				
Molybdnum	18	8				
Nickel	420	15				
Selenium	36	ND				
Zicn	2800	460				
Dry Weight Basis						

Stock pile #12, Dry sludge to be hauled in July/August 2001

Sampled: (1/23/01)

ND- None detected at Reporting Limit

Nitrogen & Phosphorus:

Nitrate ND mg/kg Nitrite ND mg/kg Kjeldahl Nitrogen 18000 mg/kg Total Phosphorus 6500 mg/kg

Total Solids 72.4 %

DIGESTED SLUDGE AT COLTON WATER RECLAMATION FACILITY VOLITLE REDUCTION

DATE	PLANT 1	PLANT 2	DAF	DIGESTER	PRI. DIG.	SEC. DIG.		SECONDARY
	PRI. SLUDGE	PRI. SLUDGE	SLUDGE	% VOLITLE	% VOLITLE	% VOLITLE	DIGESTER	DIGESTER
	% VOLITLE	% VOLITLE	% VOLITLE	IN	OUT	OUT		REDUCTION
Jan. 3, 2001	85.9%	86.2%	78.1%	83.4%	63.9%	67.6%	64.8%	58.5%
Jan. 10, 2001	85.9%	86.5%	76.3%	82.9%	69.1%	67.7%	53.9%	56.7%
Jan. 17, 2001	86.5%	87.0%	78.9%	84.1%	69.1%	68.1%	57.7%	59.7%
Jan. 24, 2001	81.2%	83.1%	*	82.2%	69.2%	67.7%	51.4%	55.1%
Feb. 7, 2001	86.1%	86.6%	78.6%	83.8%	69.8%	68.1%	55.3%	58.8%
Feb. 14, 2001	86.1%	85.2%	78.7%	83.3%	68.6%	67.1%	56.1%	59.1%
Feb. 21, 2001	85.6%	85.7%	74.9%	82.1%	70.0%	67.8%	49.2%	54.2%
Feb. 28, 2001	85.7%	85.0%	78.3%	83.0%	70.2%	68.0%	51.8%	56.4%
Mar. 8, 2001	84.1%	87.2%	79.5%	83.6%	69.8%	68.1%	54.8%	58.1%
Mar. 14, 2001	84.9%	85.9%	74.7%	81.8%	70.1%	67.3%	47.8%	54.3%
Mar. 21, 2001	80.2%	79.4%	75.6%	78.4%	71.4%	69.1%	31.3%	38.4%
Mar. 28, 2001	85.6%	84.3%	78.9%	82.9%	69.9%	67.3%	52.2%	57.6%
Apr. 4, 2001	83.8%	85.2%	79.1%	82.7%	69.0%	65.9%	53.5%	59.6%
Apr. 11, 2001	86.2%	85.7%	78.5%	83.5%	68.7%	66.9%	56.7%	60.1%
Apr. 19, 2001	85.9%	85.6%	78.9%	83.5%	68.5%	67.3%	57.0%	59.3%
Apr. 25, 2001	86.3%	85.2%	76.3%	82.6%	68.6%	66.5%	54.1%	58.1%
May 2, 2001	80.4%	0.824	*	81.4%	68.3%	66.8%	50.8%	54.1%
May 9, 2001	80.1%	79.8%	78.3%	79.4%	69.9%	68.2%	39.8%	44.5%
May 16, 2001	78.5%	79.0%	77.3%	78.3%	69.9%	68.5%	35.6%	39.7%
May 23, 2001	79.4%	80.2%	78.2%	79.3%	70.6%	68.7%	32.5%	42.7%
May 30, 2001	79.4%	81.1%	77.5%	79.3%	70.2%	68.0%	38.6%	44.5%
Jun. 6, 2001	78.8%	80.7%	78.2%	79.2%	69.6%	67.8%	39.8%	44.7%
Jun. 13, 2001	80.9%	81.5%	79.1%	80.5%	69.4%	*	45.1%	*
Average	83.4%	83.8%	77.8%	81.8%	69.3%	67.7%	49.1%	53.4%

DIGESTED SLUDGE AT COLTON WATER RECLAMATION FACILITY VOLITLE REDUCTION

DATE	PLANT 1	PLANT 2	DAF	DIGESTER	PRI. DIG.	SEC. DIG.	1	SECONDARY
	PRI. SLUDGE	PRI. SLUDGE	SLUDGE	% VOLITLE	% VOLITLE	% VOLITLE	DIGESTER	DIGESTER
	% VOLITLE	% VOLITLE	% VOLITLE	IN	OUT			REDUCTION
Jun. 27, 2001	84.0%	84.0%	75.9%	81.3%	68.6%	68.1%	49.8%	51.0%
Jul. 4, 2001	83.7%	82.6%	77.4%	81.2%	68.2%	67.2%	50.4%	52.6%
Jul. 11, 2001	84.5%	83.8%	*	84.2%	69.1%	67.5%	58.1%	60.9%
Jul. 18, 2001		84.1%	74.7%	81.2%	67.7%	66.5%	51.5%	54.0%
Aug. 1, 2001		85.4%	71.6%	80.7%	68.8%	67.3%	47.2%	50.8%
Aug. 8, 2001		82.7%	77.1%	81.6%	67.7%	66.9%	52.7%	54.5%
Aug. 15, 2001		85.0%	74.6%	81.5%	68.8%	67.0%	50.0%	53.9%
Aug. 22, 2001		85.1%	76.1%	82.0%	68.9%	67.1%	51.4%	55.2%
Aug. 29, 2001		82.7%	75.1%	80.5%	68.5%	66.5%	47.2%	51.9%
Sep. 5, 2001	85.0%	84.2%	71.5%	80.2%	68.8%	65.1%	45.6%	53.9%
Sep. 12, 2001	85.7%	85.7%	72.3%	81.2%	68.3%	66.6%	50.2%	53.9%
Sep. 19, 2001	84.3%	84.5%	72.4%	80.4%	68.8%	66.8%	46.2%	50.9%
Sep. 26, 2001	85.3%	80.3%	75.3%	80.3%	68.6%	74.2%	46.4%	29.5%
Oct. 3, 2001	84.4%	85.1%	72.6%	80.7%	69.3%	62.1%	46.0%	60.8%
Oct. 17, 2001	85.4%	84.4%	77.9%	82.6%	69.3%	67.2%	52.4%	56.8%
Oct. 24, 2001	84.9%	84.5%	71.1%	80.2%	63.0%	66.6%	57.9%	50.7%
Oct. 31, 2001	86.1%	85.3%	80.1%	83.8%	69.8%	69.4%	55.3%	56.3%
Nov. 7, 2001	86.8%	85.40%	77.6%	83.3%	70.5%	69.0%	52.0%	55.4%
Nov. 14, 2001	82.5%	83.4%	77.8%	81.2%	68.9%	67.6%	48.6%	51.7%
Nov. 21, 2001	84.5%	81.8%	73.2%	79.8%	68.4%	67.4%	45.2%	47.7%
Nov. 28, 2001		84.4%	74.6%	81.2%	68.8%	67.4%	49.0%	52.1%
Dec. 5, 2001		82.8%	75.0%	80.1%	69.3%	67.6%	43.9%	48.1%
Dec. 19, 2001		83.6%	74.4%	80.7%	68.2%	67.7%	48.6%	49.8%
Dec. 26, 2001	86.3%	85.5%	78.3%	83.4%	75.4%	67.7%	39.0%	58.4%
Average	84.7%	84.0%	71.9%	81.4%	68.8%	67.4%	49.4%	52.5%